| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rab |
⊢ { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴 ) } |
| 2 |
|
incom |
⊢ ( { 𝑥 ∣ 𝑥 ∈ On } ∩ { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ) = ( { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ∩ { 𝑥 ∣ 𝑥 ∈ On } ) |
| 3 |
|
inab |
⊢ ( { 𝑥 ∣ 𝑥 ∈ On } ∩ { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ) = { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴 ) } |
| 4 |
|
df-pw |
⊢ 𝒫 𝐴 = { 𝑥 ∣ 𝑥 ⊆ 𝐴 } |
| 5 |
4
|
eqcomi |
⊢ { 𝑥 ∣ 𝑥 ⊆ 𝐴 } = 𝒫 𝐴 |
| 6 |
|
abid2 |
⊢ { 𝑥 ∣ 𝑥 ∈ On } = On |
| 7 |
5 6
|
ineq12i |
⊢ ( { 𝑥 ∣ 𝑥 ⊆ 𝐴 } ∩ { 𝑥 ∣ 𝑥 ∈ On } ) = ( 𝒫 𝐴 ∩ On ) |
| 8 |
2 3 7
|
3eqtr3i |
⊢ { 𝑥 ∣ ( 𝑥 ∈ On ∧ 𝑥 ⊆ 𝐴 ) } = ( 𝒫 𝐴 ∩ On ) |
| 9 |
1 8
|
eqtri |
⊢ { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = ( 𝒫 𝐴 ∩ On ) |
| 10 |
|
ordpwsuc |
⊢ ( Ord 𝐴 → ( 𝒫 𝐴 ∩ On ) = suc 𝐴 ) |
| 11 |
9 10
|
eqtrid |
⊢ ( Ord 𝐴 → { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = suc 𝐴 ) |
| 12 |
11
|
unieqd |
⊢ ( Ord 𝐴 → ∪ { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = ∪ suc 𝐴 ) |
| 13 |
|
ordunisuc |
⊢ ( Ord 𝐴 → ∪ suc 𝐴 = 𝐴 ) |
| 14 |
12 13
|
eqtrd |
⊢ ( Ord 𝐴 → ∪ { 𝑥 ∈ On ∣ 𝑥 ⊆ 𝐴 } = 𝐴 ) |