Metamath Proof Explorer


Theorem inab

Description: Intersection of two class abstractions. (Contributed by NM, 29-Sep-2002) (Proof shortened by Andrew Salmon, 26-Jun-2011)

Ref Expression
Assertion inab ( { 𝑥𝜑 } ∩ { 𝑥𝜓 } ) = { 𝑥 ∣ ( 𝜑𝜓 ) }

Proof

Step Hyp Ref Expression
1 sban ( [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) )
2 df-clab ( 𝑦 ∈ { 𝑥 ∣ ( 𝜑𝜓 ) } ↔ [ 𝑦 / 𝑥 ] ( 𝜑𝜓 ) )
3 df-clab ( 𝑦 ∈ { 𝑥𝜑 } ↔ [ 𝑦 / 𝑥 ] 𝜑 )
4 df-clab ( 𝑦 ∈ { 𝑥𝜓 } ↔ [ 𝑦 / 𝑥 ] 𝜓 )
5 3 4 anbi12i ( ( 𝑦 ∈ { 𝑥𝜑 } ∧ 𝑦 ∈ { 𝑥𝜓 } ) ↔ ( [ 𝑦 / 𝑥 ] 𝜑 ∧ [ 𝑦 / 𝑥 ] 𝜓 ) )
6 1 2 5 3bitr4ri ( ( 𝑦 ∈ { 𝑥𝜑 } ∧ 𝑦 ∈ { 𝑥𝜓 } ) ↔ 𝑦 ∈ { 𝑥 ∣ ( 𝜑𝜓 ) } )
7 6 ineqri ( { 𝑥𝜑 } ∩ { 𝑥𝜓 } ) = { 𝑥 ∣ ( 𝜑𝜓 ) }