| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-rab |
|- { x e. On | x C_ A } = { x | ( x e. On /\ x C_ A ) } |
| 2 |
|
incom |
|- ( { x | x e. On } i^i { x | x C_ A } ) = ( { x | x C_ A } i^i { x | x e. On } ) |
| 3 |
|
inab |
|- ( { x | x e. On } i^i { x | x C_ A } ) = { x | ( x e. On /\ x C_ A ) } |
| 4 |
|
df-pw |
|- ~P A = { x | x C_ A } |
| 5 |
4
|
eqcomi |
|- { x | x C_ A } = ~P A |
| 6 |
|
abid2 |
|- { x | x e. On } = On |
| 7 |
5 6
|
ineq12i |
|- ( { x | x C_ A } i^i { x | x e. On } ) = ( ~P A i^i On ) |
| 8 |
2 3 7
|
3eqtr3i |
|- { x | ( x e. On /\ x C_ A ) } = ( ~P A i^i On ) |
| 9 |
1 8
|
eqtri |
|- { x e. On | x C_ A } = ( ~P A i^i On ) |
| 10 |
|
ordpwsuc |
|- ( Ord A -> ( ~P A i^i On ) = suc A ) |
| 11 |
9 10
|
eqtrid |
|- ( Ord A -> { x e. On | x C_ A } = suc A ) |
| 12 |
11
|
unieqd |
|- ( Ord A -> U. { x e. On | x C_ A } = U. suc A ) |
| 13 |
|
ordunisuc |
|- ( Ord A -> U. suc A = A ) |
| 14 |
12 13
|
eqtrd |
|- ( Ord A -> U. { x e. On | x C_ A } = A ) |