| Step |
Hyp |
Ref |
Expression |
| 1 |
|
ordeleqon |
|- ( Ord A <-> ( A e. On \/ A = On ) ) |
| 2 |
|
suceq |
|- ( x = A -> suc x = suc A ) |
| 3 |
2
|
unieqd |
|- ( x = A -> U. suc x = U. suc A ) |
| 4 |
|
id |
|- ( x = A -> x = A ) |
| 5 |
3 4
|
eqeq12d |
|- ( x = A -> ( U. suc x = x <-> U. suc A = A ) ) |
| 6 |
|
eloni |
|- ( x e. On -> Ord x ) |
| 7 |
|
ordtr |
|- ( Ord x -> Tr x ) |
| 8 |
6 7
|
syl |
|- ( x e. On -> Tr x ) |
| 9 |
|
vex |
|- x e. _V |
| 10 |
9
|
unisuc |
|- ( Tr x <-> U. suc x = x ) |
| 11 |
8 10
|
sylib |
|- ( x e. On -> U. suc x = x ) |
| 12 |
5 11
|
vtoclga |
|- ( A e. On -> U. suc A = A ) |
| 13 |
|
sucon |
|- suc On = On |
| 14 |
13
|
unieqi |
|- U. suc On = U. On |
| 15 |
|
unon |
|- U. On = On |
| 16 |
14 15
|
eqtri |
|- U. suc On = On |
| 17 |
|
suceq |
|- ( A = On -> suc A = suc On ) |
| 18 |
17
|
unieqd |
|- ( A = On -> U. suc A = U. suc On ) |
| 19 |
|
id |
|- ( A = On -> A = On ) |
| 20 |
16 18 19
|
3eqtr4a |
|- ( A = On -> U. suc A = A ) |
| 21 |
12 20
|
jaoi |
|- ( ( A e. On \/ A = On ) -> U. suc A = A ) |
| 22 |
1 21
|
sylbi |
|- ( Ord A -> U. suc A = A ) |