Metamath Proof Explorer


Theorem unisuc

Description: A transitive class is equal to the union of its successor. Combines Theorem 4E of Enderton p. 72 and Exercise 6 of Enderton p. 73. (Contributed by NM, 30-Aug-1993)

Ref Expression
Hypothesis unisuc.1
|- A e. _V
Assertion unisuc
|- ( Tr A <-> U. suc A = A )

Proof

Step Hyp Ref Expression
1 unisuc.1
 |-  A e. _V
2 ssequn1
 |-  ( U. A C_ A <-> ( U. A u. A ) = A )
3 df-tr
 |-  ( Tr A <-> U. A C_ A )
4 df-suc
 |-  suc A = ( A u. { A } )
5 4 unieqi
 |-  U. suc A = U. ( A u. { A } )
6 uniun
 |-  U. ( A u. { A } ) = ( U. A u. U. { A } )
7 1 unisn
 |-  U. { A } = A
8 7 uneq2i
 |-  ( U. A u. U. { A } ) = ( U. A u. A )
9 5 6 8 3eqtri
 |-  U. suc A = ( U. A u. A )
10 9 eqeq1i
 |-  ( U. suc A = A <-> ( U. A u. A ) = A )
11 2 3 10 3bitr4i
 |-  ( Tr A <-> U. suc A = A )