Metamath Proof Explorer


Theorem onsucuni2

Description: A successor ordinal is the successor of its union. (Contributed by NM, 10-Dec-2004) (Proof shortened by Andrew Salmon, 27-Aug-2011)

Ref Expression
Assertion onsucuni2 ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc 𝐴 = 𝐴 )

Proof

Step Hyp Ref Expression
1 eleq1 ( 𝐴 = suc 𝐵 → ( 𝐴 ∈ On ↔ suc 𝐵 ∈ On ) )
2 1 biimpac ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc 𝐵 ∈ On )
3 eloni ( suc 𝐵 ∈ On → Ord suc 𝐵 )
4 ordsuc ( Ord 𝐵 ↔ Ord suc 𝐵 )
5 ordunisuc ( Ord 𝐵 suc 𝐵 = 𝐵 )
6 4 5 sylbir ( Ord suc 𝐵 suc 𝐵 = 𝐵 )
7 suceq ( suc 𝐵 = 𝐵 → suc suc 𝐵 = suc 𝐵 )
8 6 7 syl ( Ord suc 𝐵 → suc suc 𝐵 = suc 𝐵 )
9 ordunisuc ( Ord suc 𝐵 suc suc 𝐵 = suc 𝐵 )
10 8 9 eqtr4d ( Ord suc 𝐵 → suc suc 𝐵 = suc suc 𝐵 )
11 2 3 10 3syl ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc suc 𝐵 = suc suc 𝐵 )
12 unieq ( 𝐴 = suc 𝐵 𝐴 = suc 𝐵 )
13 suceq ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵 )
14 12 13 syl ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵 )
15 suceq ( 𝐴 = suc 𝐵 → suc 𝐴 = suc suc 𝐵 )
16 15 unieqd ( 𝐴 = suc 𝐵 suc 𝐴 = suc suc 𝐵 )
17 14 16 eqeq12d ( 𝐴 = suc 𝐵 → ( suc 𝐴 = suc 𝐴 ↔ suc suc 𝐵 = suc suc 𝐵 ) )
18 11 17 syl5ibr ( 𝐴 = suc 𝐵 → ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc 𝐴 = suc 𝐴 ) )
19 18 anabsi7 ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc 𝐴 = suc 𝐴 )
20 eloni ( 𝐴 ∈ On → Ord 𝐴 )
21 ordunisuc ( Ord 𝐴 suc 𝐴 = 𝐴 )
22 20 21 syl ( 𝐴 ∈ On → suc 𝐴 = 𝐴 )
23 22 adantr ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc 𝐴 = 𝐴 )
24 19 23 eqtrd ( ( 𝐴 ∈ On ∧ 𝐴 = suc 𝐵 ) → suc 𝐴 = 𝐴 )