Metamath Proof Explorer


Theorem opelcnv

Description: Ordered-pair membership in converse relation. (Contributed by NM, 13-Aug-1995)

Ref Expression
Hypotheses opelcnv.1 A V
opelcnv.2 B V
Assertion opelcnv A B R -1 B A R

Proof

Step Hyp Ref Expression
1 opelcnv.1 A V
2 opelcnv.2 B V
3 opelcnvg A V B V A B R -1 B A R
4 1 2 3 mp2an A B R -1 B A R