Metamath Proof Explorer


Theorem opelco2g

Description: Ordered pair membership in a composition. (Contributed by NM, 27-Jan-1997) (Revised by Mario Carneiro, 24-Feb-2015)

Ref Expression
Assertion opelco2g A V B W A B C D x A x D x B C

Proof

Step Hyp Ref Expression
1 brcog A V B W A C D B x A D x x C B
2 df-br A C D B A B C D
3 df-br A D x A x D
4 df-br x C B x B C
5 3 4 anbi12i A D x x C B A x D x B C
6 5 exbii x A D x x C B x A x D x B C
7 1 2 6 3bitr3g A V B W A B C D x A x D x B C