Metamath Proof Explorer


Theorem opeq1d

Description: Equality deduction for ordered pairs. (Contributed by NM, 16-Dec-2006)

Ref Expression
Hypothesis opeq1d.1 φA=B
Assertion opeq1d φAC=BC

Proof

Step Hyp Ref Expression
1 opeq1d.1 φA=B
2 opeq1 A=BAC=BC
3 1 2 syl φAC=BC