Metamath Proof Explorer


Theorem opeqsn

Description: Equivalence for an ordered pair equal to a singleton. (Contributed by NM, 3-Jun-2008) (Revised by AV, 15-Jul-2022) (Avoid depending on this detail.)

Ref Expression
Hypotheses opeqsn.1 AV
opeqsn.2 BV
Assertion opeqsn AB=CA=BC=A

Proof

Step Hyp Ref Expression
1 opeqsn.1 AV
2 opeqsn.2 BV
3 opeqsng AVBVAB=CA=BC=A
4 1 2 3 mp2an AB=CA=BC=A