Metamath Proof Explorer


Theorem opi2

Description: One of the two elements of an ordered pair. (Contributed by NM, 5-Aug-1993) (Revised by Mario Carneiro, 26-Apr-2015) (Avoid depending on this detail.)

Ref Expression
Hypotheses opi1.1 AV
opi1.2 BV
Assertion opi2 ABAB

Proof

Step Hyp Ref Expression
1 opi1.1 AV
2 opi1.2 BV
3 prex ABV
4 3 prid2 ABAAB
5 1 2 dfop AB=AAB
6 4 5 eleqtrri ABAB