Metamath Proof Explorer


Theorem opiedgfv

Description: The set of indexed edges of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 21-Sep-2020)

Ref Expression
Assertion opiedgfv VXEYiEdgVE=E

Proof

Step Hyp Ref Expression
1 opelvvg VXEYVEV×V
2 opiedgval VEV×ViEdgVE=2ndVE
3 1 2 syl VXEYiEdgVE=2ndVE
4 op2ndg VXEY2ndVE=E
5 3 4 eqtrd VXEYiEdgVE=E