Metamath Proof Explorer


Theorem opnneip

Description: An open set is a neighborhood of any of its members. (Contributed by NM, 8-Mar-2007)

Ref Expression
Assertion opnneip JTopNJPNNneiJP

Proof

Step Hyp Ref Expression
1 snssi PNPN
2 opnneiss JTopNJPNNneiJP
3 1 2 syl3an3 JTopNJPNNneiJP