Metamath Proof Explorer


Theorem opnssborel

Description: Open sets of a generalized real Euclidean space are Borel sets (notice that this theorem is even more general, because X is not required to be a set). (Contributed by Glauco Siliprandi, 3-Jan-2021)

Ref Expression
Hypotheses opnssborel.a A = TopOpen X
opnssborel.b B = SalGen A
Assertion opnssborel A B

Proof

Step Hyp Ref Expression
1 opnssborel.a A = TopOpen X
2 opnssborel.b B = SalGen A
3 1 fvexi A V
4 2 sssalgen A V A B
5 3 4 ax-mp A B