Database
SUPPLEMENTARY MATERIAL (USERS' MATHBOXES)
Mathbox for Norm Megill
Ortholattices and orthomodular lattices
opococ
Next ⟩
opcon3b
Metamath Proof Explorer
Ascii
Unicode
Theorem
opococ
Description:
Double negative law for orthoposets. (
ococ
analog.)
(Contributed by
NM
, 13-Sep-2011)
Ref
Expression
Hypotheses
opoccl.b
⊢
B
=
Base
K
opoccl.o
⊢
⊥
˙
=
oc
⁡
K
Assertion
opococ
⊢
K
∈
OP
∧
X
∈
B
→
⊥
˙
⁡
⊥
˙
⁡
X
=
X
Proof
Step
Hyp
Ref
Expression
1
opoccl.b
⊢
B
=
Base
K
2
opoccl.o
⊢
⊥
˙
=
oc
⁡
K
3
eqid
⊢
≤
K
=
≤
K
4
eqid
⊢
join
⁡
K
=
join
⁡
K
5
eqid
⊢
meet
⁡
K
=
meet
⁡
K
6
eqid
⊢
0.
⁡
K
=
0.
⁡
K
7
eqid
⊢
1.
⁡
K
=
1.
⁡
K
8
1
3
2
4
5
6
7
oposlem
⊢
K
∈
OP
∧
X
∈
B
∧
X
∈
B
→
⊥
˙
⁡
X
∈
B
∧
⊥
˙
⁡
⊥
˙
⁡
X
=
X
∧
X
≤
K
X
→
⊥
˙
⁡
X
≤
K
⊥
˙
⁡
X
∧
X
join
⁡
K
⊥
˙
⁡
X
=
1.
⁡
K
∧
X
meet
⁡
K
⊥
˙
⁡
X
=
0.
⁡
K
9
8
3anidm23
⊢
K
∈
OP
∧
X
∈
B
→
⊥
˙
⁡
X
∈
B
∧
⊥
˙
⁡
⊥
˙
⁡
X
=
X
∧
X
≤
K
X
→
⊥
˙
⁡
X
≤
K
⊥
˙
⁡
X
∧
X
join
⁡
K
⊥
˙
⁡
X
=
1.
⁡
K
∧
X
meet
⁡
K
⊥
˙
⁡
X
=
0.
⁡
K
10
9
simp1d
⊢
K
∈
OP
∧
X
∈
B
→
⊥
˙
⁡
X
∈
B
∧
⊥
˙
⁡
⊥
˙
⁡
X
=
X
∧
X
≤
K
X
→
⊥
˙
⁡
X
≤
K
⊥
˙
⁡
X
11
10
simp2d
⊢
K
∈
OP
∧
X
∈
B
→
⊥
˙
⁡
⊥
˙
⁡
X
=
X