Metamath Proof Explorer


Theorem oppgtsetOLD

Description: Obsolete version of oppgtset as of 18-Oct-2024. Topology of an opposite group. (Contributed by Mario Carneiro, 17-Sep-2015) (Proof modification is discouraged.) (New usage is discouraged.)

Ref Expression
Hypotheses oppgbas.1 O = opp 𝑔 R
oppgtset.2 J = TopSet R
Assertion oppgtsetOLD J = TopSet O

Proof

Step Hyp Ref Expression
1 oppgbas.1 O = opp 𝑔 R
2 oppgtset.2 J = TopSet R
3 df-tset TopSet = Slot 9
4 9nn 9
5 2re 2
6 2lt9 2 < 9
7 5 6 gtneii 9 2
8 1 3 4 7 oppglemOLD TopSet R = TopSet O
9 2 8 eqtri J = TopSet O