Metamath Proof Explorer


Theorem opthpr

Description: An unordered pair has the ordered pair property (compare opth ) under certain conditions. (Contributed by NM, 27-Mar-2007)

Ref Expression
Hypotheses preqr1.a AV
preqr1.b BV
preq12b.c CV
preq12b.d DV
Assertion opthpr ADAB=CDA=CB=D

Proof

Step Hyp Ref Expression
1 preqr1.a AV
2 preqr1.b BV
3 preq12b.c CV
4 preq12b.d DV
5 1 2 3 4 preq12b AB=CDA=CB=DA=DB=C
6 idd ADA=CB=DA=CB=D
7 df-ne AD¬A=D
8 pm2.21 ¬A=DA=DB=CA=CB=D
9 7 8 sylbi ADA=DB=CA=CB=D
10 9 impd ADA=DB=CA=CB=D
11 6 10 jaod ADA=CB=DA=DB=CA=CB=D
12 orc A=CB=DA=CB=DA=DB=C
13 11 12 impbid1 ADA=CB=DA=DB=CA=CB=D
14 5 13 bitrid ADAB=CDA=CB=D