Metamath Proof Explorer


Theorem opvtxfvi

Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as function value. (Contributed by AV, 4-Mar-2021)

Ref Expression
Hypotheses opvtxfvi.v VV
opvtxfvi.e EV
Assertion opvtxfvi VtxVE=V

Proof

Step Hyp Ref Expression
1 opvtxfvi.v VV
2 opvtxfvi.e EV
3 opvtxfv VVEVVtxVE=V
4 1 2 3 mp2an VtxVE=V