Metamath Proof Explorer


Theorem opvtxov

Description: The set of vertices of a graph represented as an ordered pair of vertices and indexed edges as operation value. (Contributed by AV, 21-Sep-2020)

Ref Expression
Assertion opvtxov VXEYVVtxE=V

Proof

Step Hyp Ref Expression
1 df-ov VVtxE=VtxVE
2 opvtxfv VXEYVtxVE=V
3 1 2 eqtrid VXEYVVtxE=V