Database
ZF (ZERMELO-FRAENKEL) SET THEORY
ZF Set Theory - add the Axiom of Union
Ordinal arithmetic
ordge1n0
Next ⟩
el1o
Metamath Proof Explorer
Ascii
Unicode
Theorem
ordge1n0
Description:
An ordinal greater than or equal to 1 is nonzero.
(Contributed by
NM
, 21-Dec-2004)
Ref
Expression
Assertion
ordge1n0
⊢
Ord
⁡
A
→
1
𝑜
⊆
A
↔
A
≠
∅
Proof
Step
Hyp
Ref
Expression
1
ordgt0ge1
⊢
Ord
⁡
A
→
∅
∈
A
↔
1
𝑜
⊆
A
2
ord0eln0
⊢
Ord
⁡
A
→
∅
∈
A
↔
A
≠
∅
3
1
2
bitr3d
⊢
Ord
⁡
A
→
1
𝑜
⊆
A
↔
A
≠
∅