Metamath Proof Explorer


Theorem ordge1n0

Description: An ordinal greater than or equal to 1 is nonzero. (Contributed by NM, 21-Dec-2004)

Ref Expression
Assertion ordge1n0 OrdA1𝑜AA

Proof

Step Hyp Ref Expression
1 ordgt0ge1 OrdAA1𝑜A
2 ord0eln0 OrdAAA
3 1 2 bitr3d OrdA1𝑜AA