Metamath Proof Explorer


Theorem orim2

Description: Axiom *1.6 (Sum) of WhiteheadRussell p. 97. (Contributed by NM, 3-Jan-2005)

Ref Expression
Assertion orim2 ψχφψφχ

Proof

Step Hyp Ref Expression
1 id ψχψχ
2 1 orim2d ψχφψφχ