Metamath Proof Explorer


Theorem oteq2d

Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis oteq1d.1 φA=B
Assertion oteq2d φCAD=CBD

Proof

Step Hyp Ref Expression
1 oteq1d.1 φA=B
2 oteq2 A=BCAD=CBD
3 1 2 syl φCAD=CBD