Metamath Proof Explorer


Theorem oteq3d

Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypothesis oteq1d.1 φA=B
Assertion oteq3d φCDA=CDB

Proof

Step Hyp Ref Expression
1 oteq1d.1 φA=B
2 oteq3 A=BCDA=CDB
3 1 2 syl φCDA=CDB