Metamath Proof Explorer


Theorem oteq3

Description: Equality theorem for ordered triples. (Contributed by NM, 3-Apr-2015)

Ref Expression
Assertion oteq3 A=BCDA=CDB

Proof

Step Hyp Ref Expression
1 opeq2 A=BCDA=CDB
2 df-ot CDA=CDA
3 df-ot CDB=CDB
4 1 2 3 3eqtr4g A=BCDA=CDB