Metamath Proof Explorer


Theorem oteq123d

Description: Equality deduction for ordered triples. (Contributed by Mario Carneiro, 11-Jan-2017)

Ref Expression
Hypotheses oteq1d.1 φA=B
oteq123d.2 φC=D
oteq123d.3 φE=F
Assertion oteq123d φACE=BDF

Proof

Step Hyp Ref Expression
1 oteq1d.1 φA=B
2 oteq123d.2 φC=D
3 oteq123d.3 φE=F
4 1 oteq1d φACE=BCE
5 2 oteq2d φBCE=BDE
6 3 oteq3d φBDE=BDF
7 4 5 6 3eqtrd φACE=BDF