Metamath Proof Explorer


Theorem nfop

Description: Bound-variable hypothesis builder for ordered pairs. (Contributed by NM, 14-Nov-1995)

Ref Expression
Hypotheses nfop.1 _xA
nfop.2 _xB
Assertion nfop _xAB

Proof

Step Hyp Ref Expression
1 nfop.1 _xA
2 nfop.2 _xB
3 dfopif AB=ifAVBVAAB
4 1 nfel1 xAV
5 2 nfel1 xBV
6 4 5 nfan xAVBV
7 1 nfsn _xA
8 1 2 nfpr _xAB
9 7 8 nfpr _xAAB
10 nfcv _x
11 6 9 10 nfif _xifAVBVAAB
12 3 11 nfcxfr _xAB