Metamath Proof Explorer


Theorem oveqd

Description: Equality deduction for operation value. (Contributed by NM, 9-Sep-2006)

Ref Expression
Hypothesis oveq1d.1 φA=B
Assertion oveqd φCAD=CBD

Proof

Step Hyp Ref Expression
1 oveq1d.1 φA=B
2 oveq A=BCAD=CBD
3 1 2 syl φCAD=CBD