Metamath Proof Explorer


Theorem oveqi

Description: Equality inference for operation value. (Contributed by NM, 24-Nov-2007)

Ref Expression
Hypothesis oveq1i.1 A=B
Assertion oveqi CAD=CBD

Proof

Step Hyp Ref Expression
1 oveq1i.1 A=B
2 oveq A=BCAD=CBD
3 1 2 ax-mp CAD=CBD