Metamath Proof Explorer


Theorem ovmpod

Description: Value of an operation given by a maps-to rule, deduction form. (Contributed by Mario Carneiro, 7-Dec-2014)

Ref Expression
Hypotheses ovmpod.1 φF=xC,yDR
ovmpod.2 φx=Ay=BR=S
ovmpod.3 φAC
ovmpod.4 φBD
ovmpod.5 φSX
Assertion ovmpod φAFB=S

Proof

Step Hyp Ref Expression
1 ovmpod.1 φF=xC,yDR
2 ovmpod.2 φx=Ay=BR=S
3 ovmpod.3 φAC
4 ovmpod.4 φBD
5 ovmpod.5 φSX
6 eqidd φx=AD=D
7 1 2 6 3 4 5 ovmpodx φAFB=S