Metamath Proof Explorer


Theorem partsuc2

Description: Property of the partition. (Contributed by Peter Mazsa, 24-Jul-2024)

Ref Expression
Assertion partsuc2 Could not format assertion : No typesetting found for |- ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) Part ( ( A u. { A } ) \ { A } ) <-> ( R |` A ) Part A ) with typecode |-

Proof

Step Hyp Ref Expression
1 ressucdifsn2 RAARA=RA
2 sucdifsn2 AAA=A
3 parteq12 Could not format ( ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) = ( R |` A ) /\ ( ( A u. { A } ) \ { A } ) = A ) -> ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) Part ( ( A u. { A } ) \ { A } ) <-> ( R |` A ) Part A ) ) : No typesetting found for |- ( ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) = ( R |` A ) /\ ( ( A u. { A } ) \ { A } ) = A ) -> ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) Part ( ( A u. { A } ) \ { A } ) <-> ( R |` A ) Part A ) ) with typecode |-
4 1 2 3 mp2an Could not format ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) Part ( ( A u. { A } ) \ { A } ) <-> ( R |` A ) Part A ) : No typesetting found for |- ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) Part ( ( A u. { A } ) \ { A } ) <-> ( R |` A ) Part A ) with typecode |-