Metamath Proof Explorer


Theorem partsuc2

Description: Property of the partition. (Contributed by Peter Mazsa, 24-Jul-2024)

Ref Expression
Assertion partsuc2
|- ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) Part ( ( A u. { A } ) \ { A } ) <-> ( R |` A ) Part A )

Proof

Step Hyp Ref Expression
1 ressucdifsn2
 |-  ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) = ( R |` A )
2 sucdifsn2
 |-  ( ( A u. { A } ) \ { A } ) = A
3 parteq12
 |-  ( ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) = ( R |` A ) /\ ( ( A u. { A } ) \ { A } ) = A ) -> ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) Part ( ( A u. { A } ) \ { A } ) <-> ( R |` A ) Part A ) )
4 1 2 3 mp2an
 |-  ( ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) Part ( ( A u. { A } ) \ { A } ) <-> ( R |` A ) Part A )