Description: Property of the partition. (Contributed by Peter Mazsa, 20-Sep-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | partsuc | |- ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ressucdifsn | |- ( ( R |` suc A ) \ ( R |` { A } ) ) = ( R |` A ) |
|
| 2 | sucdifsn | |- ( suc A \ { A } ) = A |
|
| 3 | parteq12 | |- ( ( ( ( R |` suc A ) \ ( R |` { A } ) ) = ( R |` A ) /\ ( suc A \ { A } ) = A ) -> ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) ) |
|
| 4 | 1 2 3 | mp2an | |- ( ( ( R |` suc A ) \ ( R |` { A } ) ) Part ( suc A \ { A } ) <-> ( R |` A ) Part A ) |