Metamath Proof Explorer


Theorem ressucdifsn

Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class. (Contributed by Peter Mazsa, 20-Sep-2024)

Ref Expression
Assertion ressucdifsn
|- ( ( R |` suc A ) \ ( R |` { A } ) ) = ( R |` A )

Proof

Step Hyp Ref Expression
1 df-suc
 |-  suc A = ( A u. { A } )
2 1 reseq2i
 |-  ( R |` suc A ) = ( R |` ( A u. { A } ) )
3 2 difeq1i
 |-  ( ( R |` suc A ) \ ( R |` { A } ) ) = ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) )
4 ressucdifsn2
 |-  ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) = ( R |` A )
5 3 4 eqtri
 |-  ( ( R |` suc A ) \ ( R |` { A } ) ) = ( R |` A )