Metamath Proof Explorer


Theorem ressucdifsn2

Description: The difference between restrictions to the successor and the singleton of a class is the restriction to the class, see ressucdifsn . (Contributed by Peter Mazsa, 24-Jul-2024)

Ref Expression
Assertion ressucdifsn2
|- ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) = ( R |` A )

Proof

Step Hyp Ref Expression
1 disjcsn
 |-  ( A i^i { A } ) = (/)
2 disjresundif
 |-  ( ( A i^i { A } ) = (/) -> ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) = ( R |` A ) )
3 1 2 ax-mp
 |-  ( ( R |` ( A u. { A } ) ) \ ( R |` { A } ) ) = ( R |` A )