Metamath Proof Explorer


Theorem sucdifsn

Description: The difference between the successor and the singleton of a class is the class. (Contributed by Peter Mazsa, 20-Sep-2024)

Ref Expression
Assertion sucdifsn
|- ( suc A \ { A } ) = A

Proof

Step Hyp Ref Expression
1 df-suc
 |-  suc A = ( A u. { A } )
2 1 difeq1i
 |-  ( suc A \ { A } ) = ( ( A u. { A } ) \ { A } )
3 sucdifsn2
 |-  ( ( A u. { A } ) \ { A } ) = A
4 2 3 eqtri
 |-  ( suc A \ { A } ) = A