Metamath Proof Explorer
Description: The difference between the successor and the singleton of a class is the
class. (Contributed by Peter Mazsa, 20-Sep-2024)
|
|
Ref |
Expression |
|
Assertion |
sucdifsn |
⊢ ( suc 𝐴 ∖ { 𝐴 } ) = 𝐴 |
Proof
| Step |
Hyp |
Ref |
Expression |
| 1 |
|
df-suc |
⊢ suc 𝐴 = ( 𝐴 ∪ { 𝐴 } ) |
| 2 |
1
|
difeq1i |
⊢ ( suc 𝐴 ∖ { 𝐴 } ) = ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) |
| 3 |
|
sucdifsn2 |
⊢ ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) = 𝐴 |
| 4 |
2 3
|
eqtri |
⊢ ( suc 𝐴 ∖ { 𝐴 } ) = 𝐴 |