Metamath Proof Explorer


Theorem sucdifsn2

Description: Absorption of union with a singleton by difference. (Contributed by Peter Mazsa, 24-Jul-2024)

Ref Expression
Assertion sucdifsn2 ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) = 𝐴

Proof

Step Hyp Ref Expression
1 disjcsn ( 𝐴 ∩ { 𝐴 } ) = ∅
2 undif5 ( ( 𝐴 ∩ { 𝐴 } ) = ∅ → ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) = 𝐴 )
3 1 2 ax-mp ( ( 𝐴 ∪ { 𝐴 } ) ∖ { 𝐴 } ) = 𝐴