Metamath Proof Explorer


Theorem phi1

Description: Value of the Euler phi function at 1. (Contributed by Mario Carneiro, 23-Feb-2014)

Ref Expression
Assertion phi1 ϕ1=1

Proof

Step Hyp Ref Expression
1 1nn 1
2 phicl2 1ϕ111
3 1 2 ax-mp ϕ111
4 1z 1
5 fzsn 111=1
6 4 5 ax-mp 11=1
7 3 6 eleqtri ϕ11
8 elsni ϕ11ϕ1=1
9 7 8 ax-mp ϕ1=1