Metamath Proof Explorer


Theorem phlbase

Description: The base set of a constructed pre-Hilbert space. (Contributed by Mario Carneiro, 6-Oct-2013) (Revised by Mario Carneiro, 29-Aug-2015)

Ref Expression
Hypothesis phlfn.h H=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
Assertion phlbase BXB=BaseH

Proof

Step Hyp Ref Expression
1 phlfn.h H=BasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
2 1 phlstr HStruct18
3 baseid Base=SlotBasendx
4 snsstp1 BasendxBBasendxB+ndx+˙ScalarndxT
5 ssun1 BasendxB+ndx+˙ScalarndxTBasendxB+ndx+˙ScalarndxTndx·˙𝑖ndx,˙
6 5 1 sseqtrri BasendxB+ndx+˙ScalarndxTH
7 4 6 sstri BasendxBH
8 2 3 7 strfv BXB=BaseH