Metamath Proof Explorer


Theorem piord

Description: A positive integer is ordinal. (Contributed by NM, 29-Jan-1996) (New usage is discouraged.)

Ref Expression
Assertion piord A𝑵OrdA

Proof

Step Hyp Ref Expression
1 pinn A𝑵Aω
2 nnord AωOrdA
3 1 2 syl A𝑵OrdA