Metamath Proof Explorer


Theorem pjinormii

Description: The inner product of a projection and its argument is the square of the norm of the projection. Remark in Halmos p. 44. (Contributed by NM, 13-Aug-2000) (New usage is discouraged.)

Ref Expression
Hypotheses pjidm.1 HC
pjidm.2 A
Assertion pjinormii projHAihA=normprojHA2

Proof

Step Hyp Ref Expression
1 pjidm.1 HC
2 pjidm.2 A
3 1 2 pjhclii projHA
4 3 normsqi normprojHA2=projHAihprojHA
5 1 3 2 pjadjii projHprojHAihA=projHAihprojHA
6 1 2 pjidmi projHprojHA=projHA
7 6 oveq1i projHprojHAihA=projHAihA
8 4 5 7 3eqtr2ri projHAihA=normprojHA2