| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
pjidm.2 |
⊢ 𝐴 ∈ ℋ |
| 3 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 4 |
3
|
normsqi |
⊢ ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 5 |
1 3 2
|
pjadjii |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) |
| 6 |
1 2
|
pjidmi |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) = ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) |
| 7 |
6
|
oveq1i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ·ih 𝐴 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) |
| 8 |
4 5 7
|
3eqtr2ri |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐴 ) = ( ( normℎ ‘ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ) ↑ 2 ) |