| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
⊢ 𝐻 ∈ Cℋ |
| 2 |
|
pjidm.2 |
⊢ 𝐴 ∈ ℋ |
| 3 |
|
pjadj.3 |
⊢ 𝐵 ∈ ℋ |
| 4 |
3 2
|
pjorthi |
⊢ ( 𝐻 ∈ Cℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 ) |
| 5 |
1 4
|
ax-mp |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) = 0 |
| 6 |
5
|
fveq2i |
⊢ ( ∗ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) = ( ∗ ‘ 0 ) |
| 7 |
|
cj0 |
⊢ ( ∗ ‘ 0 ) = 0 |
| 8 |
6 7
|
eqtri |
⊢ ( ∗ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) = 0 |
| 9 |
1
|
choccli |
⊢ ( ⊥ ‘ 𝐻 ) ∈ Cℋ |
| 10 |
9 2
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ |
| 11 |
1 3
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ ℋ |
| 12 |
10 11
|
his1i |
⊢ ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ∗ ‘ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ) |
| 13 |
2 3
|
pjorthi |
⊢ ( 𝐻 ∈ Cℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 ) |
| 14 |
1 13
|
ax-mp |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 |
| 15 |
8 12 14
|
3eqtr4ri |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| 16 |
15
|
oveq2i |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 17 |
1 2
|
pjhclii |
⊢ ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ |
| 18 |
9 3
|
pjhclii |
⊢ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ℋ |
| 19 |
|
his7 |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ℋ ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) ) |
| 20 |
17 11 18 19
|
mp3an |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) |
| 21 |
|
ax-his2 |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ∈ ℋ ∧ ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ∈ ℋ ) → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) ) |
| 22 |
17 10 11 21
|
mp3an |
⊢ ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) + ( ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) ) |
| 23 |
16 20 22
|
3eqtr4i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| 24 |
1 3
|
pjpji |
⊢ 𝐵 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) |
| 25 |
24
|
oveq2i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) ) |
| 26 |
1 2
|
pjpji |
⊢ 𝐴 = ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) |
| 27 |
26
|
oveq1i |
⊢ ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) = ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) +ℎ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐴 ) ) ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |
| 28 |
23 25 27
|
3eqtr4i |
⊢ ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih 𝐵 ) = ( 𝐴 ·ih ( ( projℎ ‘ 𝐻 ) ‘ 𝐵 ) ) |