| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjidm.1 |
|- H e. CH |
| 2 |
|
pjidm.2 |
|- A e. ~H |
| 3 |
|
pjadj.3 |
|- B e. ~H |
| 4 |
3 2
|
pjorthi |
|- ( H e. CH -> ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) = 0 ) |
| 5 |
1 4
|
ax-mp |
|- ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) = 0 |
| 6 |
5
|
fveq2i |
|- ( * ` ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) = ( * ` 0 ) |
| 7 |
|
cj0 |
|- ( * ` 0 ) = 0 |
| 8 |
6 7
|
eqtri |
|- ( * ` ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) = 0 |
| 9 |
1
|
choccli |
|- ( _|_ ` H ) e. CH |
| 10 |
9 2
|
pjhclii |
|- ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H |
| 11 |
1 3
|
pjhclii |
|- ( ( projh ` H ) ` B ) e. ~H |
| 12 |
10 11
|
his1i |
|- ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) = ( * ` ( ( ( projh ` H ) ` B ) .ih ( ( projh ` ( _|_ ` H ) ) ` A ) ) ) |
| 13 |
2 3
|
pjorthi |
|- ( H e. CH -> ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 ) |
| 14 |
1 13
|
ax-mp |
|- ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = 0 |
| 15 |
8 12 14
|
3eqtr4ri |
|- ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) = ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) |
| 16 |
15
|
oveq2i |
|- ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) ) |
| 17 |
1 2
|
pjhclii |
|- ( ( projh ` H ) ` A ) e. ~H |
| 18 |
9 3
|
pjhclii |
|- ( ( projh ` ( _|_ ` H ) ) ` B ) e. ~H |
| 19 |
|
his7 |
|- ( ( ( ( projh ` H ) ` A ) e. ~H /\ ( ( projh ` H ) ` B ) e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` B ) e. ~H ) -> ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) ) |
| 20 |
17 11 18 19
|
mp3an |
|- ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` H ) ` A ) .ih ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
| 21 |
|
ax-his2 |
|- ( ( ( ( projh ` H ) ` A ) e. ~H /\ ( ( projh ` ( _|_ ` H ) ) ` A ) e. ~H /\ ( ( projh ` H ) ` B ) e. ~H ) -> ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) ) ) |
| 22 |
17 10 11 21
|
mp3an |
|- ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) = ( ( ( ( projh ` H ) ` A ) .ih ( ( projh ` H ) ` B ) ) + ( ( ( projh ` ( _|_ ` H ) ) ` A ) .ih ( ( projh ` H ) ` B ) ) ) |
| 23 |
16 20 22
|
3eqtr4i |
|- ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) |
| 24 |
1 3
|
pjpji |
|- B = ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) |
| 25 |
24
|
oveq2i |
|- ( ( ( projh ` H ) ` A ) .ih B ) = ( ( ( projh ` H ) ` A ) .ih ( ( ( projh ` H ) ` B ) +h ( ( projh ` ( _|_ ` H ) ) ` B ) ) ) |
| 26 |
1 2
|
pjpji |
|- A = ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) |
| 27 |
26
|
oveq1i |
|- ( A .ih ( ( projh ` H ) ` B ) ) = ( ( ( ( projh ` H ) ` A ) +h ( ( projh ` ( _|_ ` H ) ) ` A ) ) .ih ( ( projh ` H ) ` B ) ) |
| 28 |
23 25 27
|
3eqtr4i |
|- ( ( ( projh ` H ) ` A ) .ih B ) = ( A .ih ( ( projh ` H ) ` B ) ) |