| Step |
Hyp |
Ref |
Expression |
| 1 |
|
pjorth.1 |
⊢ 𝐴 ∈ ℋ |
| 2 |
|
pjorth.2 |
⊢ 𝐵 ∈ ℋ |
| 3 |
|
chsh |
⊢ ( 𝐻 ∈ Cℋ → 𝐻 ∈ Sℋ ) |
| 4 |
|
axpjcl |
⊢ ( ( 𝐻 ∈ Cℋ ∧ 𝐴 ∈ ℋ ) → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ) |
| 5 |
1 4
|
mpan2 |
⊢ ( 𝐻 ∈ Cℋ → ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ) |
| 6 |
|
choccl |
⊢ ( 𝐻 ∈ Cℋ → ( ⊥ ‘ 𝐻 ) ∈ Cℋ ) |
| 7 |
|
axpjcl |
⊢ ( ( ( ⊥ ‘ 𝐻 ) ∈ Cℋ ∧ 𝐵 ∈ ℋ ) → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 8 |
6 2 7
|
sylancl |
⊢ ( 𝐻 ∈ Cℋ → ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) |
| 9 |
5 8
|
jca |
⊢ ( 𝐻 ∈ Cℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) ) |
| 10 |
|
shocorth |
⊢ ( 𝐻 ∈ Sℋ → ( ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ∈ 𝐻 ∧ ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ∈ ( ⊥ ‘ 𝐻 ) ) → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 ) ) |
| 11 |
3 9 10
|
sylc |
⊢ ( 𝐻 ∈ Cℋ → ( ( ( projℎ ‘ 𝐻 ) ‘ 𝐴 ) ·ih ( ( projℎ ‘ ( ⊥ ‘ 𝐻 ) ) ‘ 𝐵 ) ) = 0 ) |