Metamath Proof Explorer


Theorem pjpythi

Description: Pythagorean theorem for projections. (Contributed by NM, 27-Oct-1999) (New usage is discouraged.)

Ref Expression
Hypotheses pjnorm.1 HC
pjnorm.2 A
Assertion pjpythi normA2=normprojHA2+normprojHA2

Proof

Step Hyp Ref Expression
1 pjnorm.1 HC
2 pjnorm.2 A
3 1 2 pjpji A=projHA+projHA
4 3 fveq2i normA=normprojHA+projHA
5 4 oveq1i normA2=normprojHA+projHA2
6 1 chshii HS
7 shococss HSHH
8 1 choccli HC
9 1 8 2 pjopythi HHnormprojHA+projHA2=normprojHA2+normprojHA2
10 6 7 9 mp2b normprojHA+projHA2=normprojHA2+normprojHA2
11 5 10 eqtri normA2=normprojHA2+normprojHA2