Metamath Proof Explorer


Theorem pltle

Description: "Less than" implies "less than or equal to". ( pssss analog.) (Contributed by NM, 4-Dec-2011)

Ref Expression
Hypotheses pltval.l ˙=K
pltval.s <˙=<K
Assertion pltle KAXBYCX<˙YX˙Y

Proof

Step Hyp Ref Expression
1 pltval.l ˙=K
2 pltval.s <˙=<K
3 1 2 pltval KAXBYCX<˙YX˙YXY
4 3 simprbda KAXBYCX<˙YX˙Y
5 4 ex KAXBYCX<˙YX˙Y