Metamath Proof Explorer


Theorem plvcofph

Description: Given, a,b,d, and "definitions" for c, e, f: f is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses plvcofph.1 χφψφφ¬φ¬φφ¬φ¬φ
plvcofph.2 τχθφχφψψθ
plvcofph.3 ηχτ
plvcofph.4 φ
plvcofph.5 ψ
plvcofph.6 θ
Assertion plvcofph η

Proof

Step Hyp Ref Expression
1 plvcofph.1 χφψφφ¬φ¬φφ¬φ¬φ
2 plvcofph.2 τχθφχφψψθ
3 plvcofph.3 ηχτ
4 plvcofph.4 φ
5 plvcofph.5 ψ
6 plvcofph.6 θ
7 1 4 5 plcofph χ
8 2 4 5 7 6 pldofph τ
9 7 8 pm3.2i χτ
10 3 bicomi χτη
11 10 biimpi χτη
12 9 11 ax-mp η