Metamath Proof Explorer


Theorem pldofph

Description: Given, a,b c, d, "definition" for e, e is demonstrated. (Contributed by Jarvin Udandy, 8-Sep-2020)

Ref Expression
Hypotheses pldofph.1 τχθφχφψψθ
pldofph.2 φ
pldofph.3 ψ
pldofph.4 χ
pldofph.5 θ
Assertion pldofph τ

Proof

Step Hyp Ref Expression
1 pldofph.1 τχθφχφψψθ
2 pldofph.2 φ
3 pldofph.3 ψ
4 pldofph.4 χ
5 pldofph.5 θ
6 5 a1i χθ
7 2 4 2th φχ
8 3 5 2th ψθ
9 8 a1i φψψθ
10 6 7 9 3pm3.2i χθφχφψψθ
11 1 bicomi χθφχφψψθτ
12 11 biimpi χθφχφψψθτ
13 10 12 ax-mp τ